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Abstract

Real time fingerprint identification for large scale applications is a very challenging

task not only from computations point of view but also in terms of accuracy.In

this research both these challenges are addressed and accurate minutiae matching

algorithm specially designed for hardware based accelerator is proposed.

The research has several contributions; An accurate fingerprint matching algo-

rithm based on minutiae pattern matching is initially implemented and tested on

CPU. Modifications are made in the algorithm in order to make sure efficient use of

hardware resources without any significant effect on accuracy. The RTL design for

the algorithm is developed in order to port it to an FPGA. Further study is done

to optimize the RTL level hardware design so that it consumes fewer resources

and works efficiently for real-time implementation in larger AFIS. As a result, a

hardware accelerator for minutiae pattern matching, that is capable of performing

multimillion matches per second is developed. The design is scalable and can be

customized according to the application needs. To the best of our knowledge, the

design outperforms other fingerprint matching design implemented on FPGA. It

is ensured through rigorous testing that the fingerprint-matching unit is not only

fast, but it also gives accurate matching results.

In future, as an extension of this work, a complete system is envisioned to be

developed that involves real-time fingerprint acquisition, enhancement, feature

extraction, encoding and matching with database templates.
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Chapter 1

Introduction

1.1 Overview

Biometrics is a modern-day methodology for human identification, which is based

on computable and communicative biological features of human beings. In early

ages, of mankind, biometrics including handprints and fingerprints were used

among human beings to mark their caves as an identification sign. Later in the

fourteenth century, Chinese traders developed the methodology of implementing

fingerprints as their signatures in business agreements. In current era of technol-

ogy, use of e-banking and e-commerce has grown manifolds, and security features

in such applications based on user identification have become vital. For such

vigorous identification, use of biometrics is becoming the technology of choice as

compared to conventional cards and PIN codes, which are more likely to be com-

promised. Biometrics are generally considered the most reliable and stable form of

identification for security purposes [5]. Recently, Fingerprint based identification

has also gained a lot of attention in commercial applications such as mobile phones

or telecommunication networks and surveillance. In applications like e-banking,

e-commerce and large scale security systems there is a need for a large scale AFIS

system [6], that can work in real-time.

1
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1.2 Biometrics Behaviors used for Identification

nowadays, several biometrics features are being utilized for the human identi-

fication. These biological characteristics include palm impressions, fingerprints

pattern, DNA, voice forms, Iris identification and many more. Figure 1.1 shows

the basic classification of biometrics and some of the common type of biometrics

from each class. Biological features are considered more reliable for the purpose

of identification as compared to the behavioral features. A brief discussion on the

biological biometrics is presented in subsequent sections.

Figure 1.1: Biometric Features Used for Human Identification

1.2.1 Fingerprints

A fingerprint may be considered as a sinusoidal wave of positioned points having

same frequency throughout the sinusoid image. These points are referred as ridges

and furrows representing peaks and troughs in the wave. A sample is shown in

figure 1.2.
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Figure 1.2: Finger Print Structure

The ridges in the fingerprint image have very high uniqueness due to certain bio-

metric features called ’minutiae’. Minutiae is a feature, derived from the discon-

tinuities in the pattern of ridges. Ridges have different type of discontinuities out

of which, ridge bifurcation and ridge ending are considered most important. A

fingerprint image showing these features is shown in figure 1.3 [7].

Figure 1.3: Common Minutia Types a) Ending b) Bifurcation
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1.2.2 Face

Face is another important Biometric feature used in authentication and identifica-

tion. Modern applications have high demand for facial recognition based security

as it can be achieved non-intrusively. Face recognition is used in wide range of

viable and forensic applications. Algorithm based on facial recognitions have been

developed on large scale but there are still limitations and challenges due to which,

face recognition is not being used as a major authentication feature. Challenges

include pose variation, aging effects and background illumination [8].

1.2.3 Iris

Iris recognition feature is considered more stable than face recognition. Iris is the

circular shape area between the retina and lens of the eyes. It includes many

unique pattern features including furrows, freckles and coronas.

Figure 1.4: Example of Iris Pattern [9]
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The important thing about Iris is that its patterns and features remain consistent

throughout the life span as compared to face recognition. However, there are some

challenges associated with using Iris as an identification metric too. Capturing the

complex and unique patterns of Iris require very accurate, high-quality sensors,

which are expensive, hence making this technique cost inefficient. Another issue

regarding iris image acquisition is that Iris structure can only be captured from a

specified distance, using the focal plane of camera. Therefore, this requires more

cooperation from the user and might become a tiresome and complicated exercise.

1.2.4 Palm Impressions

Palm impressions are the inner portion of the human hand. It last from the

roots of the fingers to the wrist. Palmprints provide a larger area as compared

to fingerprints and it includes some extra features as well. These features include

principal lines, minutia, ridges and textures. Principal lines consist of heart line,

life line and headline. Palmprint is shown in the figure 1.5 [10].
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Figure 1.5: Palmprint of Human Hand

1.3 Comparison of Biometrics

Biometric features such as finger impressions, palm patterns, Face recognition

and Iris are used in authentication processes based on certain evaluations which

include uniqueness of patterns, steadiness over time and adequacy for masses.

Comparisons of these biometric features is discussed in this section.

Face recognition is widely used biometric feature of identification however; au-

tomated face recognition is not very reliable. Main reason behind this factor is

that the face features are not constant and may change according to age, pose,

brightness and expressions [8]. Identification processes based on Iris recognition

is considered most reliable [9], but acquiring Iris image and its processing makes

the process expensive and tiresome. Palmprint provides better patterns and more
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features compared to a fingerprint because of its large area. However, real time

matching mechanism do not prefer palmprints as storing and matching palmprint

templates require very large space and computation capability [10].

As an instance, VeriFinger [11], a fingerprint matcher machine performs 15000

matches per second for fingerprint matching however; it performs only three

matches per second using palmprints. This means palmprint processing technique

is five thousand times slower than fingerprint identification process.

Fingerprint biometric feature in comparison is fast, reliable and is accepted by

masses. Therefore, for large databases like National Identity Cards (NIC), civil

registration and even banking systems use fingerprints as the main identification

metric [7]. Based on a study, fingerprint based systems generate more revenue

compared to other biometric systems in market [12].

A comparison of these features is shown in figure 1.6
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Figure 1.6: Biometric Features Comparison

1.4 Components of Fingerprint Matching Sys-

tem

A general fingerprint identification system includes two processes namely:

1. Fingerprint encoding

2. Fingerprint matching
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1.4.1 Fingerprint encoding

In this process, fingerprint impression is first obtained by a sensor after which the

output image is used for feature mining. In the mining step, features like minutiae

are extracted from the image. The most preferred way of extracting minutiae is

preprocessing and enhancement before applying feature extraction. Preprocessing

is applied to obtain the best results by removing unwanted deficiencies in the

image. After minutiae extraction, minutiae is encoded where biometric code for

image is computed and saved into a database.

1.4.2 Fingerprint Matching

In the matching process, biometric codes for unique finger prints are computed

and matched with the database images. Following figure 1.8 shows the modular

block diagram of fingerprint matching system. Image acquisition, preprocessing,

enhancements and matching are parts of fingerprint matching system.

Figure 1.7: Modular Diagram of Fingerprint Identification Process
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1.5 FPGA for Hardware acceleration

FPGA stands for Field Programmable Gate Array and as the name itself suggests,

it has an array of logic elements that can be programmed by the designer. FPGAs

architecture has also evolved from the start and moreover each FPGA might have a

slightly different architecture. The two most prominent FPGA vendors are Xilinx

and Altera. Each of these vendors further offer different families (variants) of

FPGA devices. Mostly all FPGAs consist of programmable logic blocks (CLBs

in Xilinx). These CLBs contain number of logic blocks called LUTs (Look up

tables) or Logic units and Flip-flops/ registers [13]. FPGAs nowadays also come

with dedicated block RAM units that can be used for storage. All of these are

interconnected and user logic is mapped on to these hardware elements to give

ASIC like performance. Initially FPGAs were used for ASIC prototyping but

later because of their configurability and lower time to market, they have become

an ideal choice for product development.

Due to an open field of programmable elements, FPGA is an ideal choice for im-

plementing Image processing algorithms that often require parallel computations.

Though CPU often do provide some level of parallelism, it cannot compete with

the design freedom on an FPGA device. An FPGA can perform 10 times better

compared to a CPU with four cores [14]. Algorithms that comprise of operations

that are independent of each other and can be performed in parallel are ideal for

FPGAs. GPUs with a lot of parallelism and extremely fast clock can compete with

FPGA’s performance. However, GPUs can give best results on simple algorithms

in which all pixel operations can be executed in parallel [14]. FPGA offer extreme

level of customization and a deterministic latency.

Biggest advantage of FPGAs over GPU is the low power consumption and cus-

tomizable IOs. This makes FPGA a preferred choice when making a standalone

application specific hardware. FPGAs now also come with 1000’s of dedicated

DSP slices that can easily handle complex mathematical operations. FPGAs are

programmed with the help of hardware descriptive languages (HDL) like Verilog

or VHDL.
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1.6 Problem Statement

Fingerprint based biometric authentication systems are very common nowadays as

fingerprint is the most reliable and cheap to work with biometric feature. It only

requires a low cost sensor and fingerprint algorithms are most mature compared

to the other biometrics. Depending upon the application, either a system requires

verification or identification. Verification means to verify if the input fingerprint

matches to the fingerprint samples stored in database for that particular person

only. In verification process, the person is known. In case of identification, the

person is not known and fingerprint is used to identify the person. This usually

require searching through the database of millions of fingerprints. So the identi-

fication process requires a lot of time to provide a result, and hence it require a

solution that can reduce time as much as possible.

As discussed earlier, FPGA naturally becomes an ideal candidate in order to per-

form the task of accelerating the fingerprint identification system. FPGAs are

very commonly used in real-time implementation of algorithms belonging to dif-

ferent fields. The goal of this research is to provide a fast and accurate fingerprint

matching design capable of performing multi-million matches per second.

1.7 Research Objective

All the steps involved around fingerprint biometric systems have been under study

for quite a while and they are more mature compared to any other biometric fea-

ture. There is still room for improvement when it comes to the hardware acceler-

ation of fingerprint algorithms. With the advancement of technology, performing

high speed computations are possible with applications in every field of study.

Main goals/ purpose of this research can be divided into two parts:

1. First objective is to study and analyze all the different stages involved in

fingerprint base biometric systems. Goal is to study different techniques
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used for fingerprint enhancement, feature extraction and matching and to

see the combination that gives accurate matching results.

2. Second goal is to develop a FPGA powered system that is capable of perform-

ing ultra-fast fingerprint matching which can be used in several applications.

Another related goal of the research is to optimize the HDL design and to

find out that which design approach yield better results in terms of FPGA

resource utilization and speed.

1.8 Research Approach

In this research initially fingerprint encoding and minutiae based fingerprint match-

ing algorithm is implemented. By varying the parameters, performance of algo-

rithm is tested. Next the encoding and matching algorithm are tweaked so that

the implementation on hardware is efficient. Hardware implementation is done to

make sure results on CPU and FPGA are identical. Two different approaches were

used for designing the hardware architecture. One approach follows a rather con-

ventional approach to design while the second approach is the proposed approach

which is hardware resource efficient. In the last step, performance is evaluated

with special attention towards possible matches per second. Figure below shows

the steps involved in research methodology.
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Figure 1.8: Steps involved in Research Methodology

1.9 Organization of thesis

Thesis consists a total of six chapters. This chapter has already given basic in-

troduction to the topic. It has also provided the problem statement that will be

addressed in the later chapters. Chapter 2 is the literature review of different tech-

niques used for handling different steps of a fingerprint based biometric system.

Chapter 3 explains the finger print encoding and matching algorithm implemented
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on CPU in order to get accurate matching results. Chapter 4 and 5 provide two

different HDL designs to perform fingerprint matching. The comparison of two

approaches are also discussed and a better approach is identified. Chapter 6 takes

the better of the two approaches to the selected hardware device and shows results

of real-time performance of design. It discusses important points like how to test

the design, matches per second and performance of design on other FPGA devices.

Chapter 7 gives the conclusion and discusses what future work can be done to take

this study forward.

1.10 Summary

This chapter gives an insight into the dissertation. Biometric features have been

introduced in brief with their comparative analysis showing how fingerprint match-

ing is better than other available biometrics. Remaining part of the chapter pro-

vides overview of the research objectives and goals. Subsequent chapter present

the complete literature review.
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Literature Review

2.1 Overview

These days, finger print impression is a very significant biometric feature. It is

being used for human identification in the banking sector and security applications.

A lot of study has already been done on fingerprint authentication, but more

work can be done on its large-scale implementation. Finger print methodology

includes two steps namely encoding and matching. In the first step, an image

is acquired and feature extraction is performed. Maio and Maltoni extracted

minutiae from gray image generated by ridge line following algorithm [15]. Though

the results were very good, but these techniques were not adopted due to there

high computational cost [7].

Watson et al [16], at NIST (National Institute of Standards and Technology) de-

veloped an algorithm for minutiae extraction. The software developed was named

as MINDTCT. The algorithm operates on each image by application of binary

value to individual pixels based on the ridge and minutiae values of neighboring

pixels. Afterwards minutia searching is applied for minutiae mining. The method

was faster in minutiae extraction, but it faced many limitations due to which it

was not adopted. Limitations included non-uniform gray scales, broken ridges and

creases. Ultimately, the method failed.

15
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Insufficiencies of minutiae points may result in wrong matching. The better ap-

proach is to include a preprocessing and enhancement stage combination before

applying feature extraction. This stage is necessary before feature extraction as

it will remove unwanted imperfections from the image. In encoding, after fea-

ture extraction, biometric code for the finger impression is computed and saved in

database to be used as a reference for matching.

In the matching stage, sample of the reference image is loaded from database and

features are matched. Steps involved in the whole process from image acquisition

to print matching is shown in the following text.

2.2 Finger Print Acquisition

According to experts, ridges and minutiae points are important in fingerprint

identification since these are mainly used in crime investigation and are acceptable

by law as well. Minutia matching is considered the most reliable and accurate

method of identification. For good identification of fingerprints, an image of 400dpi

or more is required. This can be achieved through any image sensor available which

can now acquire an image of resolution as low as 500dpi.

2.3 Pre-processing and Enhancements

In most of the matching cases, quality of input image ensures success and efficiency

of the matching algorithm. To achieve better feature extraction, fingerprint im-

pressions are passed through two stages: preprocessing and enhancement. The

purpose of these stages is to remove any unwanted imperfections in the input

image. The mentioned process is depicted in figure 2.1.
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Figure 2.1: Preprocessing and Enhancement Technique

From figure 2.1, stages included in preprocessing and enhancement stages are re-

gion of interest mask recognition, binarization and thinning. At ROI (region of

interest) mask segmentation stage, finger impression image in mined from back-

ground, based on the local variance of the image and directional coherence. After

ROI, various techniques are utilized for image enhancement [17][18][19]. These

techniques do enhance the fingerprint image however they may not improve the

ridge structure which may be affected due to broken ridges, creases and scars. In

order to enhance the ridges structure, contextual filtering may be applied.

Contextual filters are developed based on the ridges frequency and local orienta-

tion. In order to improve the ridge structure, frequency and orientation of ridges

are computed in valid region and the contextual filtering is applied to enhance

the image. Background knowledge based filtering is utilized to enhance the image

quality.
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Finally, the thinned image is used to extract minutiae. For this, image is first

binarized and then thinned in the preprocessing stage.

2.3.1 Region of Interest (ROI) segmentation

This technique is used to mine the exact finger impression from the image and

discarding rest of the contents of the image including background and other details.

The same process can be utilized to extract the background as well. ROI is mined

so that only designated features may be extracted at the time of feature extraction.

For quick and fast decision making in ROI segmentation, a non-overlapping block

technique may be utilized. ROI segmentation in finger print images of lower

contrast can be implemented using gradient magnitude as suggested by Maio and

Maltoni [15]. Figure 2.2 shows the experimental results of applying variance-based

segmentation. Another technique for ROI segmentation was given by Bazen [20],

which is based on coherence of ridge direction.

Figure 2.2: ROI segmentation based on Variance technique
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2.3.2 Initial Enhancement

Image of the fingerprint acquired may have many imperfections which can in-

clude noise, sensor error, sweating due to ink density and others. These unwanted

parameters affect the ridge structure and valley patterns. Kim [17] proposed a

methodology to deal with these unwanted noise and illumination issue by normal-

izing the variance and means. In this normalization, gray level adjustments are

ensured so that the image has the standard variance all over the image.

Greenberg et al. [18] suggested wiener filtering for the fingerprint image improve-

ment. Willis [19] suggested technique of enhancing the image and removing un-

wanted scars and noises in frequency domain enhancement. In this methodology,

Fourier transform of an image block is multiplied by the Kth power of the power

spectrum, taking the inverse Fourier transform of the result computes the enhanced

fingerprint image.

Chandra et al. [21] put forward a methodology of image enhancement by median

filtering. Noise from the fingerprint image and overall scars can be eliminated using

these enhancement techniques however, ridge structures and broken images cannot

be recovered by these techniques. Fingerprint images are generally improved using

contextual filtering which improves scars, broken ridges and creases. For this, ridge

orientation and frequency images are computed before the filtering process.

2.3.3 Orientation Estimation

In this method, overriding path of underlying local ridge structure is created by

preparing a positioning map or image O(x,y) [7]. This map is actually the orien-

tation map. The orientation image O(i,j) shows the foremost orientation of ridge

with horizontal axis in figure 2.3 [7].
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Figure 2.3: The angle of orientation

An effective orientation estimation is very necessary since the enhancement stage

is purely dependent on it. Oriented image is also utilized in feature extraction

and encoding stage. For low quality images, Turroni et al. [22] gave methodology

based on adaptive alignment approximation. Common methodologies in use for

estimation are the ones based on gradient computation [23]. In contrast, simple

gradient methods are not utilized since sines and cosines are discontinuous and

nonlinear. Bazen et al. [24], solved this issue by using principal component analysis

of the gradient vector to compute the orientation.

Kass and witkin [25] proposed orientation estimation based on doubling the angles.

Ratha et al. [26] put forward methodology of estimation by computing numerous

gradients within 17x17 space to estimate the main ridge positioning.

2.3.4 Ridge frequency estimation

In this method, ridge frequency image is computed showing ridge density in local

region. Hong et al. [2] suggested the method of frequency estimation in spatial

domain within orientation window using x-signatures of ridges. This is shown in

figure 2.4 [2].
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Figure 2.4: X-Signature based frequency estimation

In this technique, image is divided into multiple blocks. In the orientation window,

ridges are divided by the distance between first and last ridge. This computes the

frequency of the block. The methodology is different however it is not suitable

for fingerprint images having noise. Chikkerur et al. [3], developed the algorithm

for frequency and orientation estimation of fingerprint images based on short time

Fourier transform (STFT)

2.3.5 Enhancement based on Contextual filtering

Filter parameters are computed adaptively based on the local characteristics of the

image contents. Filters are tuned on the local frequency and orientation since the

main concern is to enhance the ridge structure [27]. All enhancement techniques

focus on enhancing the ridge structure. Filtering is applied along the ridge direc-

tion to remove the noise and to enhance the fingerprint image. O’Gorman and

Nickerson [28] were first to propose the contextual filter. The method convolved

each of the pixel with the filter which was bell shaped and extended along the
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ridge direction and designed for a constant ridge frequency as shown in figure 2.5

[28].

Figure 2.5: Contextual Filtering

In finger print image for diverse ridge orientations, a set of 16 rotated filters was

derived from the suggested filter. A filter is selected from the set of filters whose

orientation matches the orientation of the pixel to perform convolution. Filter is

premeditated for a specific ridge frequency so it does not exploit the ridge pattern

of the fingerprint image.

Hong et al. [2], proposed a technique for fingerprint image enhancement. The

technique used the Gabor filters which is easy and straightforward. The technique

is implemented by convolving each pixel with the Gabor filter, which is tuned

with the local frequency and orientation. One flaw in the Gabor filtering is that

it consists of a DC component, which reduces the distinction between ridge, and

valley. This is why, enhancement done by this method is not very efficient.

Improvement in Gabor filter was proposed by Wang et al. [27] in the form of

Log-Gabor filters. Figure 2.6 [27] below shows the 2-D log Gabor.
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Figure 2.6: a)2D Log Band Pass Filter b) 2D log Fan Filter c) 2D log Gabor
filter d) 1D frequency response of Log Gabor

Unlike Gabor filters, Log Gabor filter has no DC component, which makes it better

than Gabor filter. In Log Gabor method, frequency and orientation is computed

using the Gabor filter suggested by Hong et al. [2], however, enhancement is

performed by Chikkurer [3] that utilizes localized frequency domain filtering. A

two fold enhancement methodology was proposed by Mubeen et al. [29] that

processes both in spatial and frequency domain. Block diagram for this approach

is shown in figure 2.7 [29].
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Figure 2.7: Two Fold Contextual Filtering

In this process, fingerprint image is first converted to frequency domain by applying

Fast Fourier Transform (FFT) after which it is passed through various band pass

filters and then converted back to spatial domain using inverse Fourier transform.

In the spatial domain, filtering is applied to remove broken ridges and scars. For

this purpose, ridge orientation map is developed and local smoothing is applied

to all blocks of unified band-pass filtered image. Ultimately enhanced image is

obtained by combining all the blocks.

2.3.6 Binarization and Thinning

After the enhancement and pre-processing, fingerprint image is binarized before

feature extraction. The process converts gray image to binary image in which

white color represents ridges and black color shows valleys.
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Figure 2.8: Binarization of Image

In binarization a threshold is selected and all pixels below that threshold are

turned black and other are white. Selecting threshold is a cumbersome process

which is resolved by image enhancement using filter banks. Filters decrease the

illumination variation and reject all lower frequencies. Thus DC component can

be used as a universal threshold for the image. Figure 2.8 shows the result of

binarization.

Last stage before feature extraction is the thinning stage in which binarized image

is morphologically changed so that the width of the ridges is reduced to single pixel

[28, 29]. The process retains the ridges structure of the binary image. Finally, these

thin images are used for feature extraction. Result of thinning process is shown

in figure 2.9.
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Figure 2.9: Thinning process results

2.4 Feature Extraction

Fingerprint impressions contain many features that are used in image matching.

These features include minutiae, ridges, single core and others. Single core feature

may be defined as ”a core is located at the innermost re-curving ridge of the

ridge pattern. If a ridge is considered as part of a circle, core is the core of that

circle. Similarly an elliptical ridge will have focal point as its core.” Core point

is normally considered the reference point of fingerprint image and is extensively

used in fingerprint impression matching [30][31][32].

Apart from this, presence of core point in partial fingerprint impression is not sure.

Detection of core point in such images may lead to an error thus increasing the

overall error of the system. The better way to match the print impression is to use

minutiae which contains the most details. Francis Galton first detected minutiae

points by observing the discontinuities of local ridges [33]. ”Galton details” are

referred to minutiae points. Minutiae has various types each one of them contain

their own location and angle. Most common minutiae points are shown below for

reference in figure 2.10 [7].
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Figure 2.10: Most common Minutiae points

Out of the seven most common types shown in figure 2.10, ridge ending and

ridge bifurcation types are mostly used since their detection is very stable and

accurate as compared to other types. Other types of minutiae may be considered

as combination of ridge ending and ridge bifurcation so there is no such need of

extracting other features.

Minutiae points are extracted from thinned image which is obtained by thinning

algorithm. However, errors are also produced in thinning algorithm which may

create some false minutiae points by changing the ridge patters. Such false points

are eliminated using post processing technique after minutiae detection [34][35][36].

The algorithm is described in subsequent details.

2.4.1 Minutiae Extraction

In this step of extracting minutiae point, local neighboring of each pixel is scanned

in 3x3 window. During scanning of 8 neighboring pixels in clock wise direction,

ridge is considered as 0 to 1 transition. If number of 0 to 1 transition are 3, pixel

is considered as ridges bifurcation. If the transition number is equal to one only,

the point is ridge ending. Figure 2.11 [7] illustrate ridge ending and bifurcation.
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Figure 2.11: a) Ridge ending b) Ridge Bifurcation

2.4.2 False Minutiae Removal

False minutiae points created during thinning algorithm application are removed

during post processing stage. Types of the false minutiae points are illustrated in

figure 2.12 [7] below.

Figure 2.12: False Minutiae Points

Various techniques have been suggested to eliminate these types of false minutiae

points. Marius Tico and Pauli Kusomanen [35] put forward a post processing

techniques in which each candidate minutiae is scanned in a WxW window. Figure

2.13 [7] show output image with highlighted minutiae points.
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Figure 2.13: Result of minutiae extraction

A minutiae list is attained after minutiae withdrawal and false minutiae points

exclusion. Each minutiae point is epitomized using its own angle and location.

Finding the types of minutiae is very inaccurate and is thus not included in the

features list.

2.5 Features Encoding and Matching

2.5.1 General Methodology of encoding

Suppose there is a fingerprint image having M minutiae points that are signified

by a list (xi, yi, θi) where ’i’ ranges from 1 to M. Each minutiae point is a set of

(x,y,θ) and denoted by ’Mi’. Here position coordinates are signified by x and y

while θ embodies the angle with respect to the x-axis. Each minutiae point is

designated as reference point and then by using geometrical transformation, its
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angle and distance are measured with respect to its neighboring N minutia points.

Figure 2.14 shows two minutiae points and their orientation.

Figure 2.14: Fingerprint Minutiae Points representation

Minutiae is then represented as:

F = {(∆x1,∆y1,∆θ1)T , ......, (∆xN ,∆yN ,∆θN)T}

Here F contains the set of neighboring minutiae points of selected reference minu-

tia. Biometric codes are computed for the template image. A biometric code is

the encoding value of such minutiae of fingerprint image. These computed codes

are saved in database.

2.5.2 General Methodology of Matching

To match the finger print of candidate image with encoded database template,

candidate image is processed through all the steps mentioned in the context i.e.

from acquiring image to encoding till its biometric codes are computed. The
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computed codes are then compared with the biometric codes of the template image

stored in the database. The biometric codes computed for the candidate image is

compared with the codes of the template. Each minutia code is compared with

all the minutia codes of the template. Since absence of any neighboring minutia

in the template may change the order of the minutiae points, it is mandatory to

compare the minutiae code of the candidate picture with every minutiae code in

the template. If the reference minutiae code has n neighboring, comparison of

this minutia with the template will need n2 comparisons. Greater the number

of neighboring minutia, more will be the accuracy of the matching algorithm.

Contrarily, number of comparisons and biometric code sizes also increase.

If M1 is the minutiae points in the template and M2 represents the same in can-

didate picture and each minutia point in candidate and template picture has n

neighboring, complexity of the algorithm is computed to be M1xM2xn2. Number

of successful minutia pairs matching adds to the overall score of similarity.

2.5.3 Contemporary Minutia encoding and matching tech-

nique

In fingerprint processing, encoding and matching methodologies may differ, but

their basics remain the same. Encoding and matching is performed on each minu-

tia based on its distances from neighboring minutia points, as put forward by

Euclidean [37] [4] [6]. Jiang and Yau [4] suggested an encoding and matching

mechanism based on minutia-triplet structure. The method is translational and

rotational invariant. In its encoding phase, each minutia in template image is taken

as reference and based on its distances with the neighboring minutiae, a polar vec-

tor is formed. Figure 2.15 [4] shows the encoding methodology suggested by jiang

and yau where a minutia point mi(xi, yi, θi) is encoded based on its distance from

neighboring minutia points n0 and n1 which are represented as n0(xn0, yn0, θn0)

and n1(xn1, yn1, θn1).
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Figure 2.15: Fingerprint encoding method based on minutia triplet structure

Polar vector is represented as follows:

Fi = (ri0, ri1, θi0, θi1, φi0, φi1, ni0, ni1, ti, t0, t1)
T

where ri0 and ri1: distance of minutiae mi with its neighboring minutia points n0

and n1 in polar coordinates.

θi0 and θi1: difference between angle of reference minutiae and angles of neighbor-

ing minutiae n0 and n1.

φi0 and φi1: Difference between reference minutiae orientation θi and orientation

of line section which is connecting mi and neighbors n0 and n1.

ni0 and ni1: The number of ridges between minutiaemi and its neighboring minutia

n0 and n1.

Minutiae-triplet of ”ti, t0, t1” represents the type of minutiae point, e.g. ridge

ending or bifurcation.
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Jiang and Yau [4] proposed a matching mechanism too which calculates the

weighted distance between the minutiae pairs in corresponding polar vectors. Sim-

ilarity is computed between all possible minutia pairs. Number of successfully

matched minutiae pairs add to the overall similarity score of the matching. Later

a consolidation stage is applied to improve the matching done at local level.

Jea et al. [6] suggested a matching technique for partial matching of finger prints.

He proposed the use of neural network to compute the normalized matching score

within overlying region of aspirant and template fingerprint image.

Ratha et al. [38] proposed fingerprint matching techniques to find the false and

lost minutiae points within the image on a fixed radius. This method of encoding

is applied to each minutiae point and creates a vector containing encoding of all

neighboring minutia points in that radius. The method increases the complexity

of the algorithm however it creates a variable length of code for each minutiae

reference point which helps in finding the false and lost points.

Tico et al. [39] suggested encoding and matching techniques for minutia based

on the positioning of close juxtaposition of each minutia. Feng et al. [40], put

forward a hybrid scheme of matching which performs matching on fixed radius

and on orientation field.

Chikkerur [37] proposed an encoding scheme for fingerprint images bases on a

graph of local structure. The structure was named as k-plet. In this method,

encoding of selected minutiae point in performed in such a way that reference

minutiae are taken as the central minutiae. The neighboring minutiae points

fall in four quadrants. The encoding scheme retains the connectivity of minutiae

and is less error sensitive in the presence of false or lost points. With k=4 and

minutiae=3, k-plet example is illustrated in figure 2.16 [7].
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Figure 2.16: (left) k-plet local structure for minutiae 3 (right) graph based on
k-plet local structure

Chikkerur [37] presented a matching scheme as well based on k-plet structures. The

method uses the dynamic programming after which global search is performed by

novel algorithm called CBFS (coupled breath first search). During the matching

process, pair of nodes from both reference and template images are initialized for

matching based on graph. During traversal of graphs, locally matched points are

searched in CBFS manner. In the end, matching score is achieved for the pair of

nodes.

Cappelli et al. [41] proposed Minutiae cylindrical code (MCC) for encoding and

matching of the images on fixed length. In this scheme, a minutiae is selected

as reference and 3D structure based on its neighboring is generated. However,

matching process of this scheme is quite intensive and time consuming on normal

computer due to its sequential computing. Cappelli et al. [42] put forward a

method of using hash based indexing to speed up the matching process. Locality

sensitive hashing (LSH) is based on MCC which maps minutiae points on to fixed
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length transformation invariant binary vector. Cappelli et al. [43] proposed opti-

mized MCC method for GPU as well which uses the computation power of GPU

based on careful design of data structure and memory transfers.

2.6 FPGA for Fingerprint authentication pro-

cess

A lot of work has been done on implementing different steps of fingerprint au-

thentication process on FPGA. Some of the research revolved on simple dedicated

hardware based solution and some of the research was done to accelerate the pro-

cesses. It was important to review all the previous work that has been done in

this same direction. Lopez et al. [44] worked on implementing fingerprint minutiae

extraction process on FPGA but the goal was not acceleration but rather provid-

ing a dedicated low cost solution. Soft core processor was used in design for the

implementation. Khan et al. [45] implemented fingerprint image enhancement on

FPGA. The research used anisotropic Gaussian filter in order to perform finger-

print enhancement. Ratha et al. [46] focused on acceleration of minutiae based

fingerprint matching and used NIST-9 [47] database. Their research claimed that

the FPGA design can achieve up to 110000 matches per second. Lindoso et al.

[48] worked on correlation based fingerprint matching rather than minutiae based

matching. The research was focused towards fast matching and less emphasis on

accuracy. Matching two fingerprints took 0.145 milliseconds in the best scenario.

Fons et al. [49] focused on implementing a low cost minutiae based matching sys-

tem. The aim of research was not speed as it used FPGA + Microcontroller based

design that could only give result of matching two fingerprint in 723.9 milliseconds.

Lindoso et al. [50] did research on finding optimum minutiae based matching al-

gorithm for FPGAs. The research involved comparing two different fingerprint

matching algorithms on hardware. The two algorithms were Pre-alignment based

and local structure based. Experimentation was done on personal data base of

56 images and Pre-alignment based algorithm was declared to be the faster as
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it could match two fingerprints in 0.14 milliseconds. Fons et al. [51] designed a

complete automatic fingerprint-based authentication system using a single FPGA

device. The research revolved around using the run-time reconfigurable hardware.

All the stages that are part of automated fingerprint identification system were

implemented and were sequentially used. 20.7 millisecond was the time taken for

matching two images. Danese et al. [52] proposed an FPGA design using the

embedded processor. The research was performed using FVC2002 [1] database

and a speed of 0.66 milliseconds per match was achieved. The research predicted

a time as low as 0.07 millisecond per match in case the design is run at a much

higher clock speed. Jiang et al. [53] work was solely focused on getting maximum

number of matches per second and the proposed work could perform 1.22 mil-

lion matches per second. Drawback of the approach was that fingerprint minutiae

alignment was not catered for. The approach might give high speed matching as

the computations are quiet less but at the same time, it means inefficient matching

results.

2.7 Summary

The chapter gives an insight in the literature review of fingerprint processing tech-

niques. Contemporary methods of contextual based enhancement, feature extrac-

tion and efficient encoding and matching techniques have been discussed. In the

subsequent chapter, encoding and matching algorithm implementation on CPU is

discussed in detail.



Chapter 3

Minutiae Encoding and Matching

algorithms in AFIS

In the initial stage, finger print encoding and matching algorithm is implemented

on CPU. Purpose of this implementation is to first verify the algorithm’s function-

ality on CPU before porting it to a hardware. After the basic implementation,

downscaling is performed in order to make the algorithm more hardware friendly.

This chapter discusses the implementation of finger print encoding and matching

algorithm on CPU. Different steps prior to encoding and matching are covered in

the literature review chapter. To summarize, after acquiring a finger print image,

first the ROI is detected. After ROI segmentation images are enhanced to get rid

of any distortions. Further binarization and thining is performed before the final

feature extraction part. Minutiae points are extracted and each finger print is

represented as a list of minutiae. Suppose if a finger print consists of M minutiae

it will be represented in the form of:

MinutiaeList = ((x1, y1, θ1), (x2, y2, θ2), ............., (xM , yM , θM))T

Where M is the total number of minutiae in the image, x and y are the position

of the particular minutiae and θ is its angle along x-axis.

37
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3.1 Finger Print Encoding

Once the minutiae list is complete after feature extraction, encoding is performed.

Each minutiae in the minutiae list is encoded with respect to its neighboring

minutiae. The encoded minutiae list usually contain encoded features with N

nearest neighbors. The three features that are calculated are r, θ and φ. To encode

a minutiae in the minutiae list, first a list of N nearest neighbors is required.

Minutiae List = ((x1, y1, θ1), (x2, y2, θ2)......(xM , yM , θM)) (3.1)

Nearest neigh i = ((xi1, yi1, θi1), (xi2, yi2, θi2)......(xiM , yiM , θiM)) (3.2)

Where i is the minutiae number and N is the total number of nearest neighbors

used for encoding purpose. Features r, θ and φ are calculated with respect to all

N neighbors for all M minutiae.

Final encoded minutiae list can be represented as:

Encoded Minutia List = (M1,M2,M3, .........MM) (3.3)

Where M is the total number of minutiae. Each minutiae Mi can be represented

as:

Mi = ((ri1, θi1, φi1), (ri2, θi2, φi2), .........(riN , θiN , φiN)) (3.4)

Each feature r, θ and φ can be represented with the help of equations:

rij =
√

(disXij)2 + (disYij)2 (3.5)

θij = tan−
1 (disYij)

(disXij)
(3.6)

φij = Minutiae list(θi)−Nearest neigh i(θij) (3.7)

Where

disXij = Minutiae list(xi)−Nearest neigh i(xij) (3.8)
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disYij = Minutiae list(yi)−Nearest neigh i(yij) (3.9)

3.2 Finger Print Matching

One to one matching of two finger prints is done by matching the encoded minutiae

list discussed in the previous section. In case of verification, input finger print is

directly matched with the stored finger print(s) of the same person in data base.

In case of identification, the input image is matched with all of the stored images

in database. The match resulting in maximum score indicates who the fingerprint

belong to. The input image is called a reference image and it is matched with the

database images.

Matching the reference image to the database image require matching each minu-

tiae of reference image with each minutiae of database image. Each minutiae

itself is a list of encoded features (r,θ,φ) with reference to its neighboring minutiae

points. So in order to match two minutiae, each encoded feature of minutiae1 is

matched with each encoded feature of minutiae2.

For example if reference image has M1 number of minutiae and database image has

M2 number of minutiae and we match N neighboring features of each minutiae,

the total number of matches will be M1 x M2 x N x N x 3. Result of each minutiae

matched is placed in a matrix of size M1 x M2 as shown in Figure 3.2.
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Figure 3.1: Fingerprint one on one matching

Figure 3.2: Minutiae match result matrix

Where M (1, 1) means the result of matching M1 Minutiae of Reference image

with M1 Minutiae of Database image.

M (i, j) will be either 1 or 0. 1 meaning matched and 0 meaning not matched.

Matching of Minutiae is explained below in the form of equations. If feature match

score is greater than the neighbor threshold value, the two minutiae are considered

to be a match.

M(i, j) =

1 iffeat match score(i, j) ≥ neigh thr

0 Otherwise
(3.10)
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As discussed previously, minutiae matching require matching N neighbors so N x

N values are compared and feat match score(i, j) is incremented by 1 for every

positive match.

Figure 3.3: Minutiae list with respect to N neighboring minutiae

feat match score(i, j) =
N∑
k=1

N∑
l=1

Feat match(k, l) (3.11)

In order to declare a match between features, all 3 features (r,θ,φ) must match.

featmatch(k, l) will also be a binary value, 1 meaning a match in all 3 features.

feat match(k, l) = R match(k, l) && Theta match(k, l) && Phi match(k, l)

(3.12)

Criteria for r, θ and φ to be declared match vary slightly.

R match(k, l) = abs(rk − rl) ≤ R thr (3.13)

Theta match(k, l) = (abs(θk − θl) ≤ T thr) ‖ (abs(θk − θl) ≥ 360− T thr)

(3.14)

Phi match(k, l) = (abs(φk − φl) ≤ P thr) ‖ (abs(φk − φl) ≥ 360− P thr)

(3.15)
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R thr, T thr and P thr are all different threshold values for the features r, θ and

φ. The OR condition in case of Theta and Phi is because of the fact that angle is

a cyclic value where 0 and 360 degrees are considered equal.

Once all the minutiae are matched and the score matrix is fully populated, score is

calculated. Before score calculation the matrix require one last operation to make

sure that any single minutiae should only have positive match with only 1 other

minutiae. In case a minutiae had positive match with multiple minutiae, it will

only be considered as single match while calculating final score. In order to do

this, the score matrix is traversed and value of 1 is searched. In case a 1 is located

at a location (i, j), the remaining values of i row and j column are forced to zero.

miutiae score =
M1∑
i=1

M2∑
j=1

score matrix(i, j) (3.16)

Percentage match between the two finger print images is calculated:

percentage match =
minutiae score

min(M1,M2)
∗ 100 (3.17)

3.3 Downscaling for hardware

The algorithm for matching explained above is a perfect candidate for hardware

implementation as we can use the parallel processing capabilities of the FPGA

to perform all the matches in parallel. Implementation on hardware is discussed

in the next section but some modifications in the algorithm are made in order to

make it more suitable for hardware implementation.

The proposed design for FPGA benefit more if the threshold values R thr, T thr

and P thr are equal to ’1’. This will decrease the time required to load reference

image into the FPGA finger print matching block. Details of this are explained

later in the chapter. Another added benefit of this approach is that in order to

get good results at such lower threshold value, the r, θ and φ values must be

downscaled. Downscaling results in reducing the number of bits required to hold
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values of r, θ and φ. Further the size of arithmetic units get smaller that benefits

both area and speed.

r, θ, φ were downscaled to give a good result with R thr, T thr and P thr = 1.

θ and φ which were earlier in the range 0 to 360 degrees were downscaled to the

range of 0 to 45 degrees. The r, θ and φ matching equations (3.13, 3.14 and 3.15)

in the previous section can now be written like:

R match(k, l) = abs(rk − rl) ≤ 1 (3.18)

Theta match(k, l) = (abs(θk − θl) ≤ 1) ‖ (abs(θk − θl) ≥ 45− 1) (3.19)

Phi match(k, l) = (abs(φk − φl) ≤ 1) ‖ (abs(φk − φl) ≥ 45− 1) (3.20)

3.4 Algorithm Performance

Efficiency of finger print matching algorithm is calculated in terms of EER. The

testing protocol used for experimentation is FVC [1]. Equal error rate (EER) is

used as an indicator to evaluate performance. The data base used for carrying out

experimentation is FVC2002 DBI-A [1]. There are total of 100 finger print subject

and each has 8 samples. In order to calculate EER, first the False Non-Matching

Rate (FNMR) is computed. This is also known as genuine matching where samples

of a same subject are matched only with each other. For 8 samples, there will be

28 different 1 on 1 matches. Total number of matches required are:

8C2 ∗ 100 = 2800

After this, imposter matching is performed and false matching rate (FMR) is

computed. In this case, only first sample of each 100 subjects are matched with

each other. With total of 100 samples and performing 1 on 1 matches, there are

total of 100C2 combinations in which matching will take place. Total number of
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matches for imposter matching are:

100C2 = 4950

EER was calculated for different values of ’n’ nearest neighbors matched and

’neighbor threshold’. Also the threshold values for feature matching were also

changed in order to get to the lowest EER value. The table 3.1 below shows EER

values for the best combination of ′R thr′, ′T thr′ and ′P thr′ which were 6, 9 and

9 respectively.

Table 3.1: EER Calculation by varying number of neighbors matches and
neigh thresh

N-Neighbors matched

neigh thresh 4 5 6 7 8 9 10 11

1 18.692 20.726 22.334 25.094 27.006 29.447 30.566 32.485

2 3.4416 2.9491 3.1169 3.4719 3.5433 4.0660 4.3503 5.2031

3 3.7422 2.4847 1.9798 1.8579 1.7157 1.7561 1.6777 1.8858

4 15.091 5.7011 2.5902 1.7457 1.8757 1.6016 1.3375 1.4214

5 X 21.671 10.431 5.0916 2.7624 2.0451 1.7471 1.7379

6 X X 76.964 15.099 8.6172 5.3137 3.7065 2.7446

7 X X X 82.053 19.438 12.099 8.2422 5.9030

8 X X X X 85.446 24.153 15.974 11.010

9 X X X X X 88.482 78.553 19.760

10 X X X X X X 90.678 81.803

3.4.1 Effect of downscaling on algorithm’s efficiency

As mentioned earlier, all the values of (r,θ, φ) features were downscaled in order to

make algorithm more hardware friendly. ′R thr′, ′T thr′ and ′P thr′ were all fixed

to value of 1 and the downscaling was performed to reduce the r, θ, φ values to

6-bits. ’r’ was downscaled to be in the range of 0 to 63. Best EER was achieved by

downscaling θ, φ values to be in range of 0 to 45 degrees. Each downscaling case
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was tested by trying all the different combinations of ’n’ nearest neighbors matched

and ’neighbor threshold’. Table 3.2 shows EER achieved after downscaling. Best

results were achieved for 9 neighbors with ′neigh thresh′ set at 4.

Table 3.2: EER Calculations after downscaling features

N-Neighbors matched

neigh thresh 5 6 7 8 9 10

1 26.515 29.453 31.096 33.279 36.654 36.598

2 4.8427 5.3274 5.6854 6.4823 7.4975 8.5996

3 2.3712 2.3223 2.1499 2.2866 2.7208 2.9592

4 3.7642 2.5335 1.9316 2.0047 1.6575 1.7662

5 17.510 6.7547 2.9582 2.2372 2.5025 1.9565

6 X 22.117 10.064 5.0994 3.2951 2.4257

7 X X 77.000 14.081 7.9565 4.885

8 X X X 80.125 18.242 10.581

9 X X X X 82.750 22.046



Chapter 4

Hardware Design for Minutiae

Matching

The algorithm used for finger print matching is an ideal algorithm that should be

ported to hardware. Too many computations are required in order to match two

fingerprints. There were total of M1 x M2 x N x N x 3 values that are compared and

score is calculated. In software a sequential approach is used by using multiple

loops. Though some level of parallelism can be implemented on a CPU using

multithreading but CPU cannot compete with the parallel computation capability

of an FPGA. FPGA provide an open field of logic arrays that give control to the

developer. Developer is free to use the available resources to achieve what the

application requires.

4.1 Overview

For this study, two different approaches are proposed and compared for implemen-

tation on FPGA. Both approaches make use of resources and perform all matches

in parallel. Both approaches are pipelined to give high speed matching as matches

per second is a very important measure for performance. The difference between

the two approaches is:

46



Hardware Design for Minutiae Matching 47

• One approach follow the conventional style of matching that require arith-

metic units (This Chapter).

• Second proposed approach make use of DRAMs as look up tables to perform

matching (Discussed in next chapter).

Research methodology involves implementing and testing both approaches and

comparing the two approaches in terms of hardware resource utilization and pos-

sible matches per second.

DRAM based RTL design is explained in the next chapter. This chapter explains

the proposed RTL design that follows the conventional style of implementation.

In this style of implementation, features are matched using arithmetic operations.

Two values are subtracted and the difference is compared with the threshold. A

bottom up approach is used to explain the functionality of all the blocks before

reaching the top module. Further protocol is discussed which is adapted for feeding

reference and database images to finger print matching unit.

4.2 Single neighbor matching

This block is used to match single feature of one minutiae with single feature of

the other minutiae. This module only takes input and provides output declaring

if the two feature sets match or not. Block design for single neighbor matcher is

shown in figure 4.1.
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Figure 4.1: Single neighbor matcher block

As already discussed a single feature set consists of three values (R, Theta and

Phi). In order to perform matching first the block expects reference values to be

loaded. R, theta and phi are loaded into a register using ”load” write enable signal.

In order to match the loaded value with input value, the input value is provided

on the same bus with ”match” signal asserted. The two values are subtracted to

find the difference between them.

Absolute operation doesn’t exist in FPGA directly so it is implemented using

two’s complement and a multiplexer. After subtraction, the subtractor output

is observed. Most significant bit of output tells if it is a negative value or a

positive value. If the subtractor’s output is positive, the result is passed directly

to comparator. If the subtractor’s output is negative, two’s complement of the

value is fed to comparator. Two’s complement of a value is taken by inverting all



Hardware Design for Minutiae Matching 49

the bits and adding 1 to it.

2′s complement(value) = ∼ (value) + 1 (4.1)

abs(value) =

 value, if MSB of value = 0

2′s complement(value), if MSB of value = 1
(4.2)

Comparator operation is also performed in an optimized fashion. As a general

implementation rule, the greater than (>) and less than (<) checks should be

avoided as much as possible. As explained earlier, the comparator needs to check

for ” ≤ 1” and ” ≥ 44” conditions (see equations 3.18, 3.19 and 3.20). Value that

is needed to be checked is available in 6-bits, 5 being the most significant bit and

0 being the least significant bit. The ” ≤ 1” condition was handled by checking

bits 5 down to 1. If any of these bits is 1, it means the value is greater than 1.

Similarly ” ≥ 44” condition was handled by checking the same bits. If value of

most significant 5 bits is equal to 22, it means that complete value is either 44

or 45. As absolute difference of value that are in the range of 0 to 45 cannot be

greater than 45 so if the most significant 5 bits represent 22, the ” ≥ 44” check is

satisfied.

comparator(abs diff R) =

1, if abs diff R[5 : 1] = 0

0, Otherwise
(4.3)

comparator(abs diff Theta) =

1, if abs diff Theta[5 : 1] = 0 or 22

0, Otherwise
(4.4)

comparator(abs diff Phi) =

1, if abs diff Phi[5 : 1] = 0 or 22

0, Otherwise
(4.5)

At the end the two feature sets are declared to be matching, if all three comparators

result is 1.
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4.3 Minutiae matching

As previously discussed, each minutiae is represented in a form of list of features

(R, theta and phi) with reference to its neighboring minutiae. So in order to

match two minutiae, all the neighboring features of minutiae 1 are matched with

all neighboring features of minutiae 2. There are nine neighboring feature for each

minutiae to be matched in hardware. The block diagram of minutiae matching

module in figure 4.2 demonstrates the design.

There are nine single neighbor matcher modules instantiated inside the minutiae

matching module. While loading, the nine features are loaded sequentially. A de

multiplexer is used in order to select where to load the feature values. ”Neighbor

Sel” can have a value from 0 to 8. While matching, a single set of R, theta and

Phi is matched with all 9 loaded values in parallel. As a result, after inputting

only nine values for matching, result of 9x9 matches can be calculated.

While matching, the database minutiae is fed to the minutiae matcher sequentially.

One feature vector is matched with nine features of reference minutiae. The result

of these nine matches is a nine bit vector. Bit adder adds all the bits of this vector

gives us number of reference features that match with the input feature. The

remaining eight features are also matched in similar fashion. Output of bit adder

is fed to an accumulator which can give us the score of 9x9 matches.

Once the result for all 9x9 neighbors matching is complete, the score is fed to a

comparator. After experimentation on algorithm it is established that the com-

parator should declare a match in minutiae if the score is greater than or equal

to 4. Similar approach is used to implement this comparison as was done in the

single neighbor matcher. The 9x9 result is represented by a 7 bit vector (6 down

to 0) and if any bit from 6 to 2 is high, it means the value is greater than or equal

to 4.

comparator(Sum 9x9) =

1, if OR(Sum 9x9[6 : 2]) = 1

0, Otherwise
(4.6)
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Figure 4.2: Minutiae matching unit
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4.4 Matching module Top

In order to match reference and database finger print images, all minutiae must

be matched. There will be M1 x M2 minutiae matches before computing the final

score. The top level module for fingerprint matching is demonstrated with the

help of figure 4.3.

Figure 4.3: Top level fingerprint matcher

The number of minutiae can vary and each finger print will have different minutiae

count. However for the sake of hardware implementation an upper limit is set. The

maximum number of minutiae for any finger print image is 64. For this reason,

the lop level matching module has 64 minutiae matchers. A special purpose de

multiplexer is used to forward the load enable signal to the appropriate minutiae

matcher. When Reset and load both are asserted, all the matchers are loaded at

once. This case is used to reset all the reference values inside matchers. The result

from 64 minutiae matchers form a 64 bit vector. This vector along with a valid

signal is passed to the total score calculator. Total score calculator calculates the
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total number of matching minutiae among the two fingerprint templates. Before

feeding another database image for matching, the total score is reset.

4.4.1 Total score calculator

The total score calculator block gets result from minutiae matching. Single minu-

tiae of database image is matched with all minutiae of reference image at once.

The result is provided to total score calculator. Once all M2 minutiae of database

image are matched, the total score calculator provides the matching score.

Figure 4.4: Total score calculator

As mentioned in section 3.2 (Finger print matching), before calculating the score,

it is mandatory to make sure that a one minutiae of database image gives a positive

match with only one minutiae of reference image. Implementation of this step is

not straight forward in FPGA as not the whole matrix is available at once. A

single row arrives into the block at one time so the row operation is simple. No

matter how many bits out of the 64 bit register are one, they are counted only

once using the OR operator. Second task is to ignore any other positive match

at the column location of the first match. This task is handled using a mask.

Initially all bits of the 64 bit mask are high. Now suppose that a minutiae of data

base image matched with the 3rd minutiae of reference image. In this case, the

3rd bit of mask is changed to 0. So in future even if any other minutiae of data

base image matches with the 3rd minutiae of reference image, it will become zero
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after the enable mask is applied to it. Let’s consider an example where both M1

and M2 are equal to 8. Example is shown in figure 4.5.

Figure 4.5: Example to ignore multiple positive minutiae matches

The 1’s at row 6 and 7 are ignored because they lie in a column location that has

already had a match so the enable mask disables them.
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4.5 Software simulation test

After implementation, it is important to verify if the FPGA RTL design is giving

accurate results or not. Initial test is to run software simulations and comparing

simulation results with the results in CPU. Xilinx Vivado software has simulator in

order to perform software simulation. Vivado allows the user to generate a blank

test fixture with top level design module instantiated. A text fixture consists

on an instance of module to be tested which is normally called unit under test

(UUT). All the rest of the logic is to provide, UUT with the required inputs and

to observe or compare its outputs. The code inside the test fixture doesn’t need

to be synthesizable as it will never be ported to a hardware. Figure 4.6 shows the

concept in visual form.

Figure 4.6: Test Fixture design concept

Data to be fed to UUT was taken from the CPU code and was arranged in the

format required. For the design, a 31 bit data bus was used to provide data to

UUT. The 31 bit data bus comprised of all the control and data signals required as

input to UUT. Detailed purpose of each entry on bus has already been explained

in the earlier sections of the chapter.
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In case of loading a reference image into the design, Load (bit 29) will be high.

R, theta and Phi will be holing 6-bit values of the feature while Min select and

Neigh select are used to specify which neighbor of which minutiae is being loaded.

Match bit is ignored when Load bit is high.

While matching, Reset and Load bits must be 0. Match will be 1 and R, theta and

Phi will hold the feature set to be matched. Min select and neigh select will be

ignored during matching as matching is performed in parallel on all the minutiae

and all neighbors. After sending the whole data base image to the design, score

provides the total number of minutiae matched between the two images.

In order to clear the loaded reference image from the registers, Reset and Load

are both set to 1. All minutiae are loaded at once and Neigh select is set to 15

which means all neighbors will be loaded too. Only a single cycle is required to

clear the complete reference image.

Figure 4.7: Simulation testing of RTL design
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4.6 Hardware Area and Speed report

After verifying the design accuracy, design was synthesized in order to get area

and speed estimate.

4.6.1 Resource utilization

Synthesis report provides the detailed resource utilization by the design on selected

FPGA. FPGA used for the study was Xilinx Kintex Ultrascale XCKU040 [54].

Table 4.1 below shows the total available resources in the FPGA and resources

utilized by the design.

Table 4.1: RTL design resource utilization on XCKU040

Resource Type Available Used %age

CLB Registers 484800 21941 4.5%

CLB LUTs 242400 25447 10.5%

CLB LUTs as logic 242400 25446 10.5%

CLB LUTs as memory 112800 1 0%

4.6.2 Speed of the design

Vivado tool which was used for all the experimentation does not provide the speed

at which the design can run after synthesizing. The only way to find out if the

design works at a certain frequency is to provide timing constraints and imple-

menting the design. If the implementation steps is successful without any timing

errors, it means that the design can perform at that particular frequency.

In order to check the speed estimate at synthesis stage, the design was also synthe-

sized on Xilinx ISE software because it does provide maximum frequency for the

sequential design. FPGA used for synthesis on Xilinx ISE was Kintex 7 XC7K70T

FPGA [55] which had much less resources compared to the XCKU040 but had

same speed grade(-2). Reason behind changing the FPGA device is that Xilinx
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ISE is an older tool which does not support Ultrascale devices. Whatever speed

is achieved in Kintex 7 device will be lower than the speed possible on a Kintex

Ultrascale.

Table 4.2: Speed estimation of design on KC7K70T

Synthesis Maximum Possible Frequency

RTL Design 489.081 MHz



Chapter 5

Proposed DRAM based RTL

design for Fingerprint Matching

5.1 Overview

This chapter explains in detail, the second design approach. In this approach,

matching is performed by loading reference values into a RAM. These RAMs act

as a look up table during the matching phase. The RAMs used for implementation

can store 64 1-bit values. While loading a 6-bit reference value in to the RAM, the

value itself is treated as an address. 1-bit binary 1 is written on that address. Now

at the matching phase, again values to be matched are treated as read addresses.

So if the value is equal to the reference value, the output of RAM will be 1. All

the blocks in design are discussed in this section. A bottom up approach is used

for explaining the design starting from the lowest level module.

5.2 Single neighbor matching

This block is used to match single feature of one minutiae with single feature of

the other minutiae. This module takes reference and data base values as inputs

and declare if the two match or not.
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Figure 5.1: DRAM based single neighbor matcher

A single feature set consists of three values (r, θ and φ). So a single neighbor

matcher incorporates three 64 x 1-bit RAMs. Address range is from 0 to 63 and

Din can be 0 or 1. Writing to the RAMs is a synchronous operation while reading

is asynchronous.

While loading the reference value, respective Load signal is asserted which acts

as a write enable signal for RAM. Value itself is treated as address of RAM. Din

is always set to 1 during reference image storing. Din is only 0 when RAMs

are being cleared before loading a new reference image. Keeping in mind that

while matching the features, a difference of 1 between values is also considered

as a match. In order to take care of this, value 1 is also loaded to the previous

and next address location. Means loading a value R into the RAM, 1 bit binary

1 is written on location R, R+1 and R-1. So for each single value, three write

operations are required.
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Another important thing is that Theta and Phi are angles. Angles 0 and 360 are

considered equal and in our case as downscaling forced values in range of 0 to 45

degrees, 0 and 45 are considered equal. 0 and 45 will have positive match for four

different value i.e. 44, 45, 0 and 1. This meant four write operation at this corner

case. This case is avoided by forcing feeding protocol to send value 0 in case the

actual value is 0 or 45. So effectively Theta and Phi values will be in range 0 to 44.

Consider loading feature set (r = 12, θ = 0 and φ = 36), RAMs will be populated

like the figure 5.2 suggests.

Figure 5.2: DRAM population based on feature value

For value (r = 12), 1 is written at address 11, 12 and 13. For value (θ = 0), 1

is written at address 1, 0 and 44. For value (φ = 36), 1 is written at address

35, 36 and 37. Total of nine write operations are performed in order to store

three reference values. Pseudo code for loading reference r, θ and φ values to the

respective RAMs is shown in figure 5.3
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Figure 5.3: Pseudo Code for populating DRAMs with reference feature values

Now while matching, the database image feature values are again fed to RAM as

addresses. An output value of 1 simply means that the value matches reference

value. In case output of all three RAMs are 1, it means that the two feature sets

match completely.

5.3 Minutiae matching

In order to match reference minutiae with database minutiae all nine of their

neighboring features must match. This is why the minutiae matching block con-

sists of nine single neighbor matchers. Loading mechanism of proposed design is

completely different and complex compared to the conventional design.

A data distributor block is shown in the figure 5.4 below, which is responsible to

provide R, Theta and Phi values to single neighbor matchers. Din also originates

from data distributor.
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Figure 5.4: Minutiae matching unit for DRAM based design

5.3.1 Data Distributor

Single neighbor matcher expects reference and database values of R, Theta and

Phi on a single bus but they arrive in finger print matching unit differently. R,

Theta and Phi values are arranged differently on load data and match data.

Load data input is a 54 bit bus on which nine 6-bit values are placed. Each of

these nine values belong to R, Theta or Phi of the nine separate single neighbor

matcher. So in a single cycle, nine write operations are performed in parallel. This

reduces the overall reference loading time and a whole minutiae is loaded in only

9 cycles.

Pattern to write nine (r, θ and φ) values to minutiae matcher is shown in figure

5.5.
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Figure 5.5: Values on load data depending upon R,T,P signals

Three cycles are required to write the three values of R to nine single neighbor

matchers. Same is done for Theta and Phi. Data distributor fetches data from

load data bus and dispatches information to the appropriate bus. Output of data

distributor is all nine 6-bit R, theta and phi values for the respective single neighbor

matcher.

In a reset state when all loaded reference values are cleared, Load R, Load T and

Load P are all high. In this case, the data distributor sets Din to be 0. Otherwise

in normal loading operation, Din remains 1.

While matching, data is placed on 18-bit match data bus. These 18 bits contain

three 6-bit R, theta and Phi values. All M2 (Number of minutiae in data base

image) x 9 values are fed to matcher in sequence. Pattern to match nine (r, θ

and φ) values of single minutiae is shown in figure 5.6. Each R, Theta and Phi

value is fed to all nine single neighbor matchers in parallel with the help of data

distributor.
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Figure 5.6: Feature values on match data bus

5.3.2 Minutiae Score Calculator

Match result of each neighbor is fed to minutiae score calculator which accumulates

the number of neighbor matches and compares it with a threshold in order to

declare positive or negative match. Figure 5.7 shows the flow of design.

Figure 5.7: Minutiae score calculator

The input 9 bit vector represent number of positive matches between single neigh-

boring feature of database minutiae and nine neighboring features of reference

minutiae. Bit adder adds all the bits of this vector. This process is repeated nine

times for each feature of database minutiae. Output of bit adder is fed to an

accumulator which can give us the score of 9x9 matches.
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Once the result for all 9x9 neighbors matching is complete, the score is fed to a

comparator. After experimentation on algorithm it is established that the com-

parator should declare a match in minutiae if the score is greater than or equal

to 4. The 9x9 result is represented by a 7 bit vector (6 down to 0) and if any bit

from 6 to 2 is high, it means the value is greater than or equal to 4.

comparator(Sum 9x9) =

1, if OR(Sum 9x9[6 : 2]) = 1

0, Otherwise
(5.1)

5.4 Matching module Top

In order to match reference and database finger print images, all minutiae must

be matched. There will be M1 x M2 minutiae matches before computing the final

score. The top-level module for fingerprint matching is shown in the figure 5.8.

The lop level matching module has 64 minutiae matchers. A special purpose de

multiplexer is used to forward the load R, T, P signal to the appropriate minutiae

matcher. When Reset and load both are asserted, all the matchers are loaded at

once. This case is used to reset all the reference values inside matchers. The result

from 64 minutiae matchers form a 64 bit vector. This vector along with a valid

signal is passed to the total score calculator. Total score calculator calculates the

total number of matching minutiae among the two fingerprint templates. Before

feeding another database image for matching, the total score is reset. Detailed

explanation of total score calculator is already covered in section 4.4.1.
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Figure 5.8: Top-level design for DRAM based fingerprint matcher

5.5 Pipelining in Design

All the design explained in chapter 4 and 5 are explained according to the log-

ical flow. Clock signal is not shown in the designs to reduce complexity of the

block diagrams and only focus is to explain the functionality of blocks. However

throughout the design, all modules operate synchronously and pipelining is applied

in order to make the design run as fast as possible.

Purpose of pipelining is to increase the maximum clock frequency at which the

design can run. Pipelining may cause an initial latency but when the overall

speed of execution increase. Pipelining can be explained with the help of a simple

example. Consider a small design shown in figure 5.9, which require adding three

values.
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Figure 5.9: Example design without pipelining

Consider both adders have a combinational delay of D nanoseconds. So the total

combinational delay of the given design would be 2D nanoseconds. This means

the maximum frequency at which the design can work is 1/2D Hz. So if we need

to perform (A + B + C) operation on 100 different values of A, B and C, it will

take 100 x 2D nanoseconds. Now let’s see the advantage of pipelining on the same

design.

Figure 5.10: Pipelined example design of figure 5.8

By using flip-flops, the combinational delay of the design is now equal to the com-

bination delay of single adder i.e. D nanoseconds. Pipelining will cause an initial

latency which means result of first (A+B+C) will arrive in D + D nanoseconds.

But after that each new addition will be performed in only D nanoseconds. So

again in case we need to perform (A + B + C) operation on 100 different values

of A, B and C, it will take (100 x D) + D nanoseconds. For example if D is equal

to 5, 100 additions will take 1000 nanoseconds on non-pipelined design and only

505 nanoseconds on the pipelined design.

Pipelining in the implemented design was done in order to optimize the design for

both area and performance. Each FPGA slice consist of multiple look up tables
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and flip flops. Logic is mapped on the look up tables (LUT) and flip flops (FF) are

used for pipelining and adding delays. A good design often has a high percentage

of LUT-FF pair utilization. Pipelined version of minutiae matcher is presented in

next section.

5.5.1 Pipelined design of Minutiae matcher

The figures 5.11 and 5.12 below demonstrate how pipelining is performed on minu-

tiae matcher which has already been covered in section 5.3

Figure 5.11: Pipelined version of minutiae matching unit
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Figure 5.12: Pipelined minutiae score calculator

5.6 Software Simulation test

Just like the first design approach, this design was also initially verified. The

simulation results showed that the DRAM based RTL design was yielding the

exact same result as CPU implementation. Data was fed to UUT as required in

order to load reference image and to match gallery images.

Figure 5.13: Simulation testing of DRAM based design
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5.7 Hardware Area and Speed report

One important goal of the research is to come up with an approach that utilizes

least number of hardware resources. In order to make the comparison, DRAM

based design was also synthesized to get area and speed estimate.

5.7.1 Hardware resource utilization

FPGA used for the study was Xilinx Kintex Ultrascale XCKU040 [54]. The table

5.1 below shows the total available resources in the FPGA and resources utilized

by the DRAM based design and the conventional RTL design.

Table 5.1: Resource comparison between conventional and DRAM based de-
sign

Conventional Design DRAM Based Design

Resources Available Used %age Used %age

CLB Registers 484800 21941 4.5% 12771 2.63%

CLB LUTs 242400 25447 10.5% 14713 6%

CLB LUTs as logic 242400 25446 10.5% 12981 5.3%

CLB LUTs as mem 112800 1 0% 1729 1.5%

The table clearly shows that the proposed DRAM based approach is a much better

as it require a lot lesser number of CLBs in order to pack all the design. The

reason behind the better performance can be explained by explaining the FPGA

architecture a little. As explained earlier in the chapter, the current design make

use of RAMs in order to match feature values while the normal method required

arithmetic and logical operations in order to perform comparison.

In FPGAs the logic is implemented on configurable logic blocks (CLBs). Architec-

ture of each FPGA family differ slightly so here only the architecture of XCKU040

is discussed which is used for the experimentation. Every CLB consists of one slice

with eight 6-input LUTs and sixteen storage elements (FFs) [56]. The slice can
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either be SLICEL or SLICEM. L in SLICEL stand for logic as the LUTs in SLI-

CEL can only be configured for logical operation. The LUTs in SLICEM however

can be used as look up table, 64-bit DRAM or 32-bit Shift register. Difference

between SLICEL and SLICEM is shown in the table 5.2.

Table 5.2: Difference between SLICEL and SLICEM

Resources LUTs FFs DRAM Shift Registers

SLICEL 8 16 X X

SLICEM 8 16 512 bits 256 bits

As the table tells us, there are no distributed RAM and shift registers available

in SLICEL. There are total of 14,100 SLICEM in XCKU040 and 16,200 SLICEL.

In the normal implementation the comparison is being performed by arithmetic

and logic operations only. This means all the design will be implemented with the

help of mostly LUTs and FFs with some little use of shift registers. Which results

in almost no utilization of the added resources available in SLICEMs and hence

total number of slices required is high.

In the proposed DRAM based design, feature matching is performed with the help

of distributed RAMs. This takes off a lot of load from LUTs. Design is placed into

the FPGA by making full use of the SLICEM additional resources which results

in almost half number of total required CLBs.

5.7.2 Speed of the design

In order to check the speed estimate at synthesis stage, the DRAM based design

was also synthesized on Xilinx ISE software. FPGA used for synthesis on Xilinx

ISE was Kintex 7 XC7K70T FPGA [55] which had much less resources compared

to the XCKU040 but had same speed grade(-2). Reason behind changing the

FPGA device is that Xilinx ISE is an older tool which does not support Ultrascale

devices. Whatever speed is achieved in Kintex 7 device will be lower than the

speed possible on a Kintex Ultrascale. The table below shows maximum possible



Proposed DRAM based RTL design for Fingerprint Matching 73

clock speed for DRAM based design. Performance of conventional design is also

shown for reference.

Table 5.3: Speed comparison between the two proposed designs

Design Maximum Frequency

Conventional 489.081 MHz

DRAM based 560.711 MHz



Chapter 6

Performance Evaluation and

Discussion

After verifying both design approaches and comparing synthesis reports, final step

is to shift to an actual hardware and test the design. Moving forward all the tests

are performed for the DRAM based design which clearly has much less resource

utilization and is capable of running at a much faster clock.

6.1 Hardware Testing Wrapper

In hardware the test fixture cannot be used as it is not synthesizable code. Only

synthesizable code can be implemented on FPGA. So the task in hand is to feed

information to the fingerprint matching module. In a complete implemented prod-

uct, FPGA will be getting all the information via some external interface. But

for hardware testing without the involvement of any external hardware, we had to

create a testing mechanism inside the FPGA as shown in figure 6.1.

To provide input to finger print matching module, a ROM was instantiated inside

the FPGA. This ROM was programmed to hold all the data which was required

to be fed to matching module. ROM held loading data for reference image as well

as the matching data for database images. Purpose of counter in the design is to

74
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provide read addresses to ROM that will in turn provide input to the matching

module. ROM was 64 bit wide and it held data in the format explained in the

next section.

Figure 6.1: Hardware design for testing FP Matching unit

In order to perform matching test on hardware, the ROM was filled with one

reference image at a time. Information of 800 images from FVC2002 [1] were

also stored in ROM which were all matched with the reference image. Multiple

tests were performed by changing the reference image. Whichever reference image

is loaded into the design, it is matched with all database images and scores are

calculated.

6.1.1 ROM Output Bus format

Before explaining the contents of 64-bit bus lets recap the loading requirement

in DRAM based design. As explained in the design, for each value of R, Theta

and Phi, three values are required to be loaded to the DRAM. This would have

caused a three times increase in loading time. Therefore, the loading mechanism

was changed. In a single cycle, nine values of R, Theta or Phi were loaded at once.

The input data taken from the CPU code was modified in the pattern, which can

be stored into the RTL design. This is explained with the help of an example for

single minutiae. In conventional design, the reference image was loaded in nine
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cycles where each of the nine neighboring r, θ, and φ are stored in a single cycle.

In the proposed design all the nine values of r, θ, or φ are loaded at once and

because there are three different values for each r, θ, and φ, total of only 9 cycles

are needed to load the whole minutiae.

Figure 6.2: Difference between ’loading’ in the two proposed designs

A 64 bit bus is used in case of the DRAM based design in order to store reference

image to the design, send data base images for matching and to reset the loaded

reference image. Detailed purpose of each entry in the bus has already been

explained in the chapter 5. Data organization on the bus is shown using figures

6.3, 6.4 and 6.5.

Figure 6.3: Organization of 64-bit input data bus

Load is 2 bit in the proposed design as it is used to select if the values being loaded

belong to R, Theta or Phi. While loading the reference image, Reset is set to 0,

Load is set according to the data being loaded, Match is ignored, Min select tells

which minutiae is being loaded and Load data is as shown in figure 6.2 values of

either R, Theta or Phi(6-bit each).
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Figure 6.4: Load data information

While matching, Reset and Load must be set to 0. Match will be 1, Min select is

ignored in this case. Match data will only have 18 least significant bits filled with

R, Theta and Phi of data base image.

Figure 6.5: Data base image matching information

In order to clear the loaded reference image Reset is set to 1, Load is set to 3, Match

and Min Select are ignored in this scenario. Load data will contain addresses of

RAMs that are required to be cleared. So LD1 to LD9 values will move from 0 to

63 in order to clear the whole RAM. 63 cycles are required to reset all the 1728

BRAMs because all BRAMs of all minutiae are cleared in parallel.

6.2 Hardware platform

Hardware used for this experiment was Xilinx Kintex UltraScale FPGA Evaluation

Kit KCU105 [57] shown in figure 6.6. The available FPGA on the development

kit was a Kintex Ultrascale XCKU040-2FFVA1156E. Clock was provided by an

oscillator on board and start signal was provided by an on-board push button.
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Figure 6.6: Xilinx Kintex Ultrascale evaluation board KCU105

And in order to see the output, ILA core was added to the design. ILA core helps

in capturing real time internal waveforms from FPGA and displays them on a

testing PC. ILA uses JTAG interface in order to display data from FPGA to a

testing PC. The results were verified on hardware as well after successful testing.

6.3 Matching unit capability: Matches per sec-

ond

The matches per second will only be discussed for the DRAM based design, which

is better in all respects. Total number of cycles required to feed a data base

template with M number of minutiae to the matching unit are:

Cycles for Feeding = (M ∗ 9)

Where 9 is the number of neighboring features matched for each minutiae. Once

all the information is fed to the matching unit, final score is updated on bus after

a few cycles. Next data base template can only be fed to the matching unit once
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score of previous template is computed. These few cycles delay must be included

while calculating matches per second. This delay was 6 cycles in our case and it

is shown in figure 6.7.

Figure 6.7: Delay after feeding complete DB template information

This 6 cycles delay is independent of minutiae count and will always remain con-

stant. So total number of cycles required to match a single data base template of

M minutiae are:

Cycles for Matching = (M ∗ 9) + 6

The hardware test was performed at 300 MHz successfully which means one clock

cycle is equal to 3.33 nanoseconds. In order to calculate matches per second, we

used a scenario where minutiae in DB image is equal to the maximum possible

minutiae count i.e. 64. Test results are shown in Figure 6.8
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Figure 6.8: Match time for DB template with 64 Minutiae

Only 1,940.388 nanoseconds are required to match the image which means 515,360

matches per second. The average minutiae count is 45 in the FVC2002 [1] database

so matches per second will be much less on average. Table 6.1 show matches per

second for both the scenarios.

Table 6.1: Matches per second achieved using single matcher at 300 MHz

Minutiae Clock Speed Clock Period Match Time

Count (MHz) (ns) (microsecond) Matches/ sec

Max (64)
300 3.33

1.940 515,360

Avg (45) 1.370 729,925

6.4 Multiple FP matching units in parallel

The free available space in the FPGA allows us to use multiple finger print match-

ers in parallel. Same reference image can be loaded to all of the matcher modules

while the database images can be fed to separate matching modules. This means

a direct increase in the hardware resource utilization but it also means a direct

increase in matches per second.
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In order to feed data to matching units, Separate ROMs were used for Loading

and Matching phases. In our experiment, we worked with 8 matching units in

parallel. Testing was performed by loading 100 gallery images into the ROM and

the design was verified on simulation as well as hardware. Details of test will be

discussed in later section.

6.4.1 Calculating percentage score and best match

The output score coming out of each matching unit represents the number of

minutiae matched between the respective gallery image and the database image.

In order to compare the scores, first a percentage score is required as mentioned

in equation 3.17. Percentage score calculation and best match search is performed

in a manner which is explained in figure 6.9

Figure 6.9: Percentage score calculation and best match searching

Where X is the number of matching units working in parallel. When minutiae score

from all three matching units are available on bus, the scores are captured and

transmitted in a sequential manner using a bus multiplexer. This demultiplexer

also finds the divisor for respective score which will be used to calculate percentage.

Divisor for any particular gallery image is simply the minimum of gallery image

and reference image minutiae count (see 3.17). The demultiplexer generates IDs

and send it along with the score and divisor.
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Benefit of transmitting information of three matching units in series is that only

single divider block is enough for processing. Divider computes the percentage

score which then enters into the ”best match” block synchronized with respective

ID. Best match block initially hold ’0’ value as reference score. For each score

entering the block, it is matched with reference score. If the new score is greater

than reference score, it becomes the new reference score and it’s ID is stored as

best match.

6.4.2 Effect on resources utilization

The effect of this using multiple matching units can be seen in the table 6.2. The

table gives the resource utilization on Kintex Ultrascale XCKU040 FPGA which

was used for all the development and testing.

Table 6.2: Resources utilized after using 8 matchers in parallel

Resources Available Used %age

Slice Registers 484800 102923 21.23%

Slice LUTs 242400 118776 49.01%

LUTs used as Logic 242400 104474 43.10%

LUTs used as Memory 112800 14336 12.71%

The resource utilization increase linearly as we increase the number of matching

units. Trend of increase in resource utilization is shown in table 6.3. Table shows

resource utilization in case of 1, 3 and 8 matching units.

Table 6.3: Resource utilization in case of using 1,3 or 8 FP Matching units

Resources Available 1 Unit 3 Units 8 Units

CLB Registers 484800 2.65% 7.8% 21.23%

CLB LUTs 242400 6.1% 18.17% 49.01%

CLB LUTs as logic 242400 5.39% 16.03% 43.10%

CLB LUTs as mem 112800 1.5% 4.6% 12.71%
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An important thing to consider while increasing number of matching units is that

the loading and matching data will be fed from some external interface and that

will become bottleneck of the design. Achievable matches per second (MPS) and

Input data rate required for different number of matching units and different fre-

quencies are shown in the two table below.

Table 6.4: Matches per second possible depending on number of units and
operating frequencies

Number of Operating Speed

Matching Units 100 MHz 200 MHz 300 MHz

1 171,609 MPS 343,669 MPS 515,360 MPS

2 343,218 MPS 687,338 MPS 1,030,558 MPS

3 514,827 MPS 1,031,007 MPS 1,546,082 MPS

Table 6.5: Required bandwidth for different number of units and operating
frequencies

Number of Operating Speed

Matching Units 100 MHz 200 MHz 300 MHz

1 381 MB/s 763 MB/s 1,144 MB/s

2 572 MB/s 1,144 MB/s 1,715 MB/s

3 763 MB/s 1,526 MB/s 2,289 MB/s

The communication interfaces are also getting faster. The requirement by our de-

sign can easily be met by using the 8-lane PCIe interface available on the KCU105.

We can get around 8 Gigabytes/sec input data by using the 8 lane PCIe 3.0 [58].

6.5 Evaluating Hardware Performance: Matches

per Second

The maximum possible speed we can achieve on KCU105 depends on multiple

factors. From tables 6.4 and 6.5 we can see that increasing number of matching
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units is a better way to increase matches per second compared to increasing op-

erating frequency. Required bandwidth will be the bottleneck in this case and

not the FPGA and design capability. We increased the number of matching units

and implemented the design using Vivado after applying timing constraints. The

number of matching units which we were able to implement were 8. The design

was successfully implemented on Kintex ultrascale FPGA when constrained to run

at 200 MHz.

In order to test the design’s functionality, 100 gallery images were loaded into the

matching ROMs and were fed to 8 matching units. This meant that for first 4

matching units, 13 images were fed and for last 4 matching units, 12 images were

sent. The scores were verified on simulation and hardware. Matches per second

was observed from Vivado ILA. As in parallel systems, the speed will be equal to

the speed of matching unit that is last to finish all the assigned matches. Matching

unit 2 had to match images which had on average larger minutiae count so it was

used to calculate the matches per second capability of our hardware. Figure 6.10

shows the time required to match 100 images while using 8 matching units running

at 200 MHz.

Figure 6.10: Time taken by Hardware to match 100 images

As shown in the figure, we require 26.045 microseconds to match 100 images. This

figure translate to 3,839,508 matches per second. This is because the average
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minutiae count for data base images used is around 45.

We also performed testing in order to compute matches per second in the worst

case scenario which means if each data base image has minutiae count equal to 64.

For this purpose we stored a 64 minutiae count image and respectively provided

the same image to all matches working in parallel. This gave us the figure of

2,749,140 matches per second.

Keeping this figure as target, hardware tests were performed to get maximum

matches per second. We were able to successfully run hardware test using 6

matching units in parallel, which means 2,577,319 matches per second as shown in

table 6.6 below. Design with 12 matching units was also synthesized successfully

but running on hardware require some work at the logic placement stage.

Table 6.6: Achieved Matches Per Second on Hardware

Test Type Clock Speed Matching Units Matches/ sec

For Max Minutiae Count
200 MHz 8

2,749,140

Test on 100 DB images 3,839,508

6.6 Comparison with previously published FPGA

matchers

The table 6.8 below compares the performance of our design with already pub-

lished work on fingerprint matching acceleration using FPGA. The details of these

designs have already been covered in literature review (Section 2.6) and here it is

only summarized in tabular form.
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Table 6.7: Comparison with other published FPGA based Fingerprint match-
ers [50][52][53]

Method EER FPGA MPS Drawback

Lindoso et al. 5.35% Xilinx Virtex 4 7,067
- Low EER

- Non Standard DB

Danese et al. 6.16%
Altera Stratix II

Nios II Processor

1,515

(Current)

14,285

(Predicted)

- Low EER

Jiang et al.
Not

mentioned
Xilinx Virtex E 1,220,000

- Doesn’t cater finger-

print alignment

- High MPS at cost

of accuracy

Proposed 1.65%
Xilinx Kintex

Ultrascale
2,749,140

6.7 Synthesis report on other FPGAs

The design did not use any resource that was dedicated for Kintex UltraScale

FPGAs. All the RTL level programming was done to make sure platform inde-

pendence. Though he concept used for optimization was used by studying the

architecture of Xilinx FPGAs. The Distributed RAM instance used is a primitive

64x1 DRAM block that is available in all Xilinx FPGAs. The resource utilization

for the proposed DRAM based design was also checked for several other Xilinx

FPGAs. This included some old and mostly newer FPGA families. The results

are shown only for a single matching instance. All the devices selected have a -2

speed grade.
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Table 6.8: Resource utilization on some other Xilinx FPGAs

FPGA Family and Device

Spartan 6 Virtex 5 Kintex 7 Artix 7Speed and Area

XC6SLX45T XC5VLX110T XC7K70T XC7A100T

Slice Registes 22% 18% 14% 9%

Slice LUTs 54% 22% 35% 22%

Max CLK Freq 235.4 MHz 351.2 MHz 560.71 MHz 419.38 MHz



Chapter 7

Conclusion and Future Work

The research process was able to give many positive outcomes. We were able

to implement an encoding and matching algorithm which provide good accurate

results. Hardware design approach was proposed which consumes almost half re-

sources compared to the conventional design approach. The matching algorithm

was ported to hardware which accelerated identification process, capable of han-

dling multi-million matches per second. Total of 2,749,140 matches per second

were achieved on KCU105 board by using 8 Fingerprint matching units in parallel

running at 200MHz.

Table 7.1: Achieved Matches Per Second on KCU105

Matching Resource Operating Matches

Units Utilization Speed per sec

8 49.01% 200 MHz 2,749,140

An AFIS depends on design of matching unit as well as design of interface. The

current research work focused only on design of matching unit. For future work,

a complete system can be developed in which a server can feed reference and

database images to KCU105 using some external interface. In case we increase

the matching units to 12, keeping FPGA utilization to around 73%, we will get

2,061,855 matches per second at 100 MHz. But this will mean 2.69 Gigabytes/
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sec required bandwidth. Assuming we can get around 7 Gigabytes/ sec band-

width easily from the available PCIe interface, we can ran our design at 250 MHz

frequency, which will give 5,154,639 matches per second.

Table 7.2: Achievable MPS on KCU105 using the proposed design

Matching Resource Operating Matches Required

Units Utilization Speed per sec Bandwidth

12 72.8% 250 MHz 5,154,639 6.7 GB/s

Future work include achieving the maximum possible matches per second on hard-

ware which as estimated in table 7.2. There is still a need of fast and low-cost

fingerprint matching solutions in many field. The design can be incorporated in

any design and ported to any FPGA. This design is scalable for the need of appli-

cation. In case of low computational requirement, the design can be ported to a

low cost FPGA device, running at a much lower data rate. Further work can be

done on testing the design on other databases as well and further optimizing the

accuracy of algorithm.

Due to customizable IOs, FPGA is capable of interfacing with any chip directly.

Furthermore, FPGA consume much less power compared to GPUs. This makes

FPGA a candidate for making a standalone-dedicated hardware, which is capable

of performing multimillion matches per second. FPGA can directly interface with

any standard fingerprint acquisition device and any storage device used for storing

database template images. So in future, work can be done on a standalone FPGA

based AFIS that is portable, consumes very less power and can perform multi-

million matches per second.



Bibliography

[1] “Fingerprint verification competition 2002,” http:// bias.csr.unibo.it/

fvc2002/ .

[2] L. Hong, Y. Wan, and A. K. Jain, “Fingerprint image enhancement: Algo-

rithms and performance evaluation,” IEEE Transactions on Pattern Analysis

Machine Intelligence, vol. 20, no. 8, pp. 777–789, 1998.

[3] S. Chikkerur, A. N. Cartwright, and V. Govindaraju, “Fingerprint enhance-

ment using stft analysis,” Pattern Recognition, vol. 40, no. 1, pp. 198–211,

2007.

[4] X. Jiang and W.-Y. Yau, “Fingerprint minutiae matching based on the local

and global structures,” 15th International conference on Pattern Recognition,

vol. 2, pp. 1038–1041, 2000.

[5] K. Jain, A. Ross, and S. Prabhakar, “An introduction to biometric recog-

nition,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 14, pp. 4–20, 2004.

[6] T. Y. Jea and V. Govindaraju, “A minutia-based partial fingerprint recogni-

tion system,” Pattern Recognition, vol. 38, pp. 1672–1684, 2005.

[7] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, “Handbook of fingerprint

recognition,” 2nd Edition, Springer, New York, 2009.

[8] W. Zhao, R. Chellappa, A. Rosenfeld, and P. J. Phillips, “Face recognition:

A literature survey,” ACM Computing Surveys, vol. 35, no. 4, pp. 399–458,

2003.

90

http://bias.csr.unibo.it/fvc2002/
http://bias.csr.unibo.it/fvc2002/


Bibliography 91

[9] J. Daugman, “How iris recognition works,” IEEE Transactions on Circuits

and systems for Video Technology, vol. 14, no. 1, pp. 21–30, 2004.

[10] R. Cappelli, M. Ferrara, and D. Maio, “A fast and accurate palmprint recog-

nition system based on minutiae,” IEEE Transactions on Systems, Man and

Cybernetics - Part B, vol. 42, no. 3, pp. 956–962, 2012.

[11] “Neurotechnology, verifinger,” http:// www.neurotechnology.com.

[12] “Homeland security news wire, 18 january

2011,” http:// www.homelandsecuritynewswire.com/

biometrics-market-expected-hit-12-billion-2015-0 .

[13] “Basic fpga architecture and its applications,” https:// www.edgefx.in/

fpga-architecture-applications/ .

[14] Y. Yamaguchi, “Performance comparison of fpga, gpu and cpu in image pro-

cessing,” 19th International conference on Field Programmable Logic and Ap-

plication, 2009.

[15] D. Maio and D. Maltoni, “Direct gray-scale minutiae detection in finger-

prints,” IEEE Transactions on Pattern Analysis Machine Intelligence, vol. 19,

no. 1, pp. 27–40, 1997.

[16] C. I. Watson, M. D. Garris, E. Tabassi, C. L. Wilson, R. M. McCabe, S. Janet,

and K. Ko, “User’s guide to nist biometric image software (nbis),” National

institute of standards and technology, 2002.

[17] B. G. Kim and D. J. Park, “Adaptive image normalization based on block

processing for enhancement of fingerprint image,” Electronics Letters, vol. 38,

no. 14, pp. 696–698, 2002.

[18] S. Greenberg, M. Aladjem, D. Kogan, and I. Dimitrov, “Fingerprint image

enhancement using filtering techniques,” International conference on Pattern

Recognition (15th), vol. 3, pp. 326–329, 2000.

http://www.neurotechnology.com
http://www.homelandsecuritynewswire.com/biometrics-market-expected-hit-12-billion-2015-0
http://www.homelandsecuritynewswire.com/biometrics-market-expected-hit-12-billion-2015-0
https://www.edgefx.in/fpga-architecture-applications/
https://www.edgefx.in/fpga-architecture-applications/


Bibliography 92

[19] A. J. Willis and L. Myers, “A cost–effective fingerprint recognition system

for use with low-quality prints and damaged fingertips,” Pattern Recognition,

vol. 34, no. 2, pp. 255–270, 2001.

[20] A. M. Bazen and S. H. Gerez, “Segmentation of fingerprint images,” Work-

shop on Circuits Systems and Signal Processing (ProRISC), 2001.

[21] E. Chandra and K. Kanagalakshmi, “Noise elimination in fingerprint images

using median filter,” International Journal of Advanced Networking and Ap-

plications, vol. 2, no. 6, pp. 950–955, 2011.

[22] F. Turroni, D. Maltoni, R. Cappelli, and D. Maio, “Improving fingerprint ori-

entation extraction,” IEEE Transactions on Information Forensics Security,

vol. 6, no. 3, pp. 1002–1013, 2011.

[23] A. Grasselli, “On the automatic classification of fingerprints,” Methodologies

of Pattern Recognition, (S. Watanabe Edition), Academic, New York, pp.

253–273, 1969.

[24] A. M. Bazen and S. H. Gerez, “Systematic methods for the computation of

the directional fields and singular points of fingerprints,” IEEE Transactions

on Pattern Analysis Machine Intelligence, vol. 24, no. 7, pp. 905–919, 2002.

[25] M. Kass and A. Witkin, “Analyzing oriented patterns,” Computer Vision

Graphics and Image Processing, vol. 37, no. 3, pp. 362–385, 1987.

[26] N. K. Ratha, S. Y. Chen, and A. K. Jain, “Adaptive flow orientation-based

feature extraction in fingerprint images,” Pattern Recognition, vol. 28, no. 11,

pp. 1657–1672, 1995.

[27] W. Wang, J. W. Li, F. F. Huang, and H. L. Feng, “Design and implementation

of log-gabor filter in fingerprint image enhancement,” Pattern Recognition

Letters, vol. 29, pp. 301–308, 2008.

[28] L. O’Gorman and J. V. Nickerson, “An approach to fingerprint filter design,”

Pattern Recognition, vol. 22, no. 1, pp. 29–38, 1989.



Bibliography 93

[29] M. Ghafoor, I. A. Taj, W. Ahmed, and M. N. Jafri, “Efficient 2-fold contextual

filtering approach for fingerprint enhancement,” IET Image Processing, vol. 8,

no. 7, pp. 417–425, 2014.

[30] A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti, “Filterbank - based

fingerprint matching,” IEEE Transactions on image processing, vol. 9, no. 5,

pp. 846–859, 2000.

[31] Y. Jie, Y. Y. Fang, Z. Renjie, and S. Qifa, “Fingerprint minutiae matching

algorithm for real time system,” Pattern Recognition, vol. 39, no. 1, pp. 143–

146, 2006.

[32] S. Chikkerur and N. Ratha, “Impact of singular point detection on fingerprint

matching performance,” Automatic Identification Advanced Technologies, pp.

207–212, 2005.

[33] A. K. Jain, L. Hong, and R. Bolle, “On-line fingerprint verification,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 4,

pp. 302–314, 1997.

[34] J. Zhou and J. Gu, “A model-based method for the computation of finger-

prints’ orientation field,” IEEE Transactions on Image Processing, vol. 13,

no. 6, pp. 821–835, 2004.

[35] M. Tico and P. Kuosmanen, “An algorithm for fingerprint image post process-

ing,” 34th Asilomar Conference on Signals, Systems and Computers, 2000.

[36] A. K. Jain, J. Feng, A. Nagar, and K. Nandakumar, “On matching latent

fingerprints,” Computer Vision and Pattern Recognition Workshop, 2008.

[37] S. Chikkerur, A. N. Cartwright, and V. Govindaraju, “K-plet and cbfs: A

graph based fingerprint representation and matching algorithm,” Proceedings

of the International Conference on Biometrics, Hong King, 2006.

[38] N. K. Ratha, V. D. Pandit, R. M. Bolle, and V. Vaish, “Robust fingerprint

authentication using local structural similarity,” Workshop on Applications

of Computer Vision, pp. 29–34, 2000.



Bibliography 94

[39] M. Tico and P. Kuosmanen, “Fingerprint matching using an orientation-based

minutia descriptor,” IEEE Transactions on Pattern analysis and machine

intelligence, vol. 25, no. 8, pp. 1009–1014, 2003.

[40] J. Feng, “Combining minutiae descriptors for fingerprint matching,” Pattern

Recognition, vol. 41, pp. 342–352, 2008.

[41] R. Cappelli, M. Ferrara, and D. Maltoni, “Minutia cylinder-code: A new rep-

resentation and matching technique for fingerprint recognition,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 32, no. 12, pp.

2128–2141, 2010.

[42] R. Cappelli, D. Maltoni, and M. Ferrara, “Fingerprint indexing based on

minutia cylinder code,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 33, no. 5, pp. 1051–1057, 2012.

[43] R. Cappelli, M. Ferrara, and D. Maltoni, “Large-scale fingerprint identifica-

tion on gpu,” Information Sciences 306, pp. 1–20, 2015.

[44] M. Lopez and E. Canto, “Fpga implementation of a minutiae extraction fin-

gerprint algorithm,” IEEE International Symposium on Industrial Electron-

ics, 2008.

[45] T. M. Khan, D. G. Bailey, M. A. U. Khan, and Y. Kong, “Efficient hardware

implementation for fingerprint image enhancement using anisotropic gaussian

filter,” IEEE Transactions on Image processing, vol. 26, no. 5, 2017.

[46] N. Ratha, K. Karu, S. Chen, and A. Jain, “A real-time matching system

for large fingerprint databases,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 18, no. 8, pp. 799–813, 1996.

[47] “Nist special database 9,” https:// www.nist.gov/ srd/ nist-special-database-9 .

[48] A. Lindoso, L. Entrena, C. Lpez-Ongil, and J. Liu, “Correlation-based fin-

gerprint matching using fpgas,” IEEE International conference on Field-

Programmable Technology, 11-14 Dec 2005.

https://www.nist.gov/srd/nist-special-database-9


Bibliography 95

[49] M. Fons, F. Fons, and E. Canto, “Design of fpga-based hardware accelerators

for on-line fingerprint matcher systems,” Research in Microelectronics and

Electronics, 12-15 June 2006.

[50] A. Lindoso, L. Entrena, and J. Izquierdo, “Fpga-based acceleration of finger-

print minutiae matching,” 3rd Southern Conference on Programmable Logic,

28-26 Feb 2007.

[51] M. Fons, F. Fons, and E. Cant, “Fingerprint image processing acceleration

through run-time reconfigurable hardware,” IEEE Transactions on Circuits

and Systems II: Express Briefs, vol. 57, no. 12, pp. 991–995, 2010.

[52] G. Danese, M. Giachero, F. Leporati, and N. Nazzicari, “A multicore em-

bedded processor for fingerprint recognition,” 13th Euromicro Conference on

Digital System Design: Architectures, Methods and Tools, 1-3 Sept. 2010.

[53] R. M. Jiang and D. Crookes, “Fpga-based minutia matching for biometric

fingerprint image database retrieval,” Journal of Real-Time Image Processing,

vol. 3, no. 3, pp. 177–182, 2008.

[54] “Ultrascale architecture and product data sheet: Overview,” Xilinx, DS890.

[55] “7 series fpgas data sheet: Overview,” Xilinx, DS180.

[56] “Ultrascale architecture configurable logic block,” Xilinx, UG574.

[57] “Kcu105 board user guide,” Xilinx, UG917.

[58] “Pci express 3.0 frequently asked questions,” https:// web.archive.org/ web/

20140201172536/ http:// www.pcisig.com/ news room/ faqs/ pcie3.0 faq/ .

https://web.archive.org/web/20140201172536/http://www.pcisig.com/news_room/faqs/pcie3.0_faq/
https://web.archive.org/web/20140201172536/http://www.pcisig.com/news_room/faqs/pcie3.0_faq/

	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Overview
	1.2 Biometrics Behaviors used for Identification
	1.2.1 Fingerprints
	1.2.2 Face
	1.2.3 Iris
	1.2.4 Palm Impressions

	1.3 Comparison of Biometrics
	1.4 Components of Fingerprint Matching System
	1.4.1 Fingerprint encoding
	1.4.2 Fingerprint Matching

	1.5 FPGA for Hardware acceleration
	1.6 Problem Statement
	1.7 Research Objective
	1.8 Research Approach
	1.9 Organization of thesis
	1.10 Summary

	2 Literature Review
	2.1 Overview
	2.2 Finger Print Acquisition
	2.3 Pre-processing and Enhancements
	2.3.1 Region of Interest (ROI) segmentation
	2.3.2 Initial Enhancement
	2.3.3 Orientation Estimation
	2.3.4 Ridge frequency estimation
	2.3.5 Enhancement based on Contextual filtering
	2.3.6 Binarization and Thinning

	2.4 Feature Extraction
	2.4.1 Minutiae Extraction
	2.4.2 False Minutiae Removal

	2.5 Features Encoding and Matching
	2.5.1 General Methodology of encoding
	2.5.2 General Methodology of Matching
	2.5.3 Contemporary Minutia encoding and matching technique

	2.6 FPGA for Fingerprint authentication process
	2.7 Summary

	3 Minutiae Encoding and Matching algorithms in AFIS
	3.1 Finger Print Encoding
	3.2 Finger Print Matching
	3.3 Downscaling for hardware
	3.4 Algorithm Performance
	3.4.1 Effect of downscaling on algorithm's efficiency 


	4 Hardware Design for Minutiae Matching
	4.1 Overview
	4.2 Single neighbor matching
	4.3 Minutiae matching
	4.4 Matching module Top
	4.4.1 Total score calculator

	4.5 Software simulation test
	4.6 Hardware Area and Speed report
	4.6.1 Resource utilization
	4.6.2 Speed of the design


	5 Proposed DRAM based RTL design for Fingerprint Matching
	5.1 Overview
	5.2 Single neighbor matching
	5.3 Minutiae matching
	5.3.1 Data Distributor
	5.3.2 Minutiae Score Calculator

	5.4 Matching module Top
	5.5 Pipelining in Design
	5.5.1 Pipelined design of Minutiae matcher

	5.6 Software Simulation test
	5.7 Hardware Area and Speed report
	5.7.1 Hardware resource utilization
	5.7.2 Speed of the design


	6 Performance Evaluation and Discussion
	6.1 Hardware Testing Wrapper
	6.1.1 ROM Output Bus format

	6.2 Hardware platform
	6.3 Matching unit capability: Matches per second
	6.4 Multiple FP matching units in parallel
	6.4.1 Calculating percentage score and best match
	6.4.2 Effect on resources utilization

	6.5 Evaluating Hardware Performance: Matches per Second
	6.6 Comparison with previously published FPGA matchers
	6.7 Synthesis report on other FPGAs

	7 Conclusion and Future Work
	Bibliography



